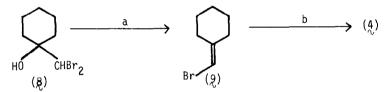
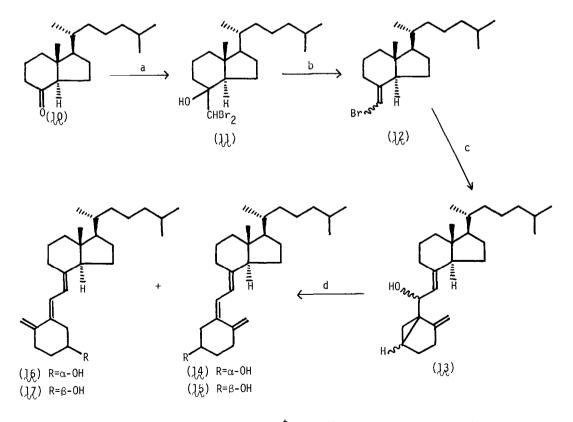

CONVERGENT AND STEREOSELECTIVE SYNTHESIS OF VITAMIN D₃ VIA 3,5-CYCLOVITAMINS D₃

Hideo Nemoto,^a Xiao-Ming Wu,^a Hiroshi Kurobe,^a Masataka Ihara,^a Keiichiro Fukumoto,^{*a} and Tetsuji Kametani^{*b}

a) Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan and b) Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

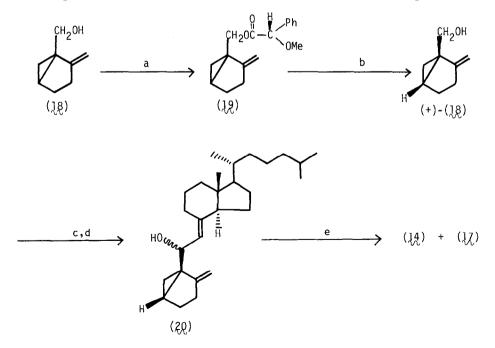

<u>Summary</u>: A convergent and stereoselective synthesis of vitamin D_3 was achieved via 3,5-cyclovitamins D_3 (20) which were prepared from the chiral aldehyde (2) and the vinyl bromide (12) derived from Grundmann's ketone.

In the previous paper¹, we reported a high stereocontrolled synthesis of the model compounds (ξ and χ) of vitamin D₃ and its la-hydroxy derivative from the cyclo compounds (4 and 5) which were prepared by the coupling reaction of organostannane (1) and (⁺)-aldehydes (2 and 3). By the application of this strategy, a convergent and stereoselective synthesis of vitamin D₃ was achieved as reported in this communication.



Since the preparation of the corresponding organostannane from Grundmann's ketone $(1,0)^2$ was tedious, we firstly investigated the crucial coupling reaction by the alternative method. Thus the dibromide $(8)^3$ was reduced with zinc and acetic acid in $\operatorname{CH}_2\operatorname{Cl}_2^4$ to give cyclohexylidene bromide $(9)^5$ in 83.5% yield. The metallation⁴ of 9 using two equivalents of \pm -butyllithium at -78°C in THF followed by condensation with the (\pm) -aldehyde (2) at -78°C afforded in 79.2% yield an epimeric mixture of the alcohols (4), which was identical with the previous sample.¹ Therefore optically active Grundmann's ketone $(10)^2$ was

reacted with dibromomethane in the presence of lithium dicyclohexylamide (LDCA)³ in THF at -98°C to give in 43.3% yield the dibromide $(\frac{11}{\sqrt{5}})^5$ which was subjected to the reduction with zinc and acetic acid.⁴ The vinyl bromide $(\frac{12}{\sqrt{5}})^5$ obtained in 89% yield as a mixture of two isomers in a ratio of 1 : 0.9 was metallated and coupled with the racemate of the aldehyde (2) under the same reaction conditions as above to produce the alcohols $(\frac{13}{\sqrt{5}})^5$ in 55% yield as a mixture of stereoisomers. Solvolysis⁶ of the stereoisomeric mixture of $\frac{13}{\sqrt{5}}$ in the presence of <u>p</u>-toluenesulfonic acid in aqueous dioxane at 55°C for 10 min followed by silica gel column chromatography gave two substances. The spectral data of the less polar product (13% yield) were superimposable on those of trans-vitamin D₂


a: Zn, AcOH. b: ^tBuLi; (⁺)-2, THF, -78°C.

a: CH₂Br₂, LDCA, -98°C. b: Zn, AcOH. c: ^tBuLi; (±)-2. d: p-TsOH, aq. dioxane.

while those of the polar product (35.3% yield) was very similar to those of vitamin D_3 . However HPLC of the latter using Hitachi gel 3011 eluting with MeOH - CHCl₃ (4 : 1 v/v) revealed that the product was a 1 : 1 mixture of two epimers (14 and 15) at the chiral C_3 position. Therefore the former product must be also a mixture of two epimers (16 and 17). On the basis of the above result, we then investigated a stereoselective synthesis of vitamin D_3 starting from the chiral aldehyde (2).

The 1-hydroxymethyl-2-methylenebicyclo[3.1.0]hexane (18) was reacted with S-(+)-Q-methylmandelic acid in the presence of dicyclohexylcarbodiimide and 4-dimethylaminopyridine⁷ to give, in 95.5% yield, the diastereoisomeric mixture of the esters (19)⁵, whose separation was accomplished by HPLC using LiChrosorb SI 60 eluting with AcOEt - n-hexane (1 : 49 v/v). Two ester fractions were respectively hydrolyzed with potassium hydroxide in methanol to afford quantitatively the alcohols⁵, $[\alpha]_D^{20}$ +45.0° (c=0.44, n-hexane) and $[\alpha]_D^{20}$ -46.5° (c= 0.46, n-hexane). The (+)-isomer (18), whose absolute configuration was determined by the conversion to vitamin D₃, was oxidized with pyridinium chlorochromate to the corresponding aldehyde, which was coupled with the bromide (12) as before. The 3,5-cyclovitamins D₃ (20) obtained in 46.5% yield were separated into two components⁵ by silica gel column chromatography. The solvolysis of the polar compound (26% yield) as above gave vitamin D₃ (14), $[\alpha]_D^{20}$ +50.5° (c=0.27, CHCl₃), mp 83 - 86°C [lit.⁹, $[\alpha]_D$ +51.9° (CHCl₃), mp 84 - 85°C] in 54.8% yield, which was identical with the authentic compound in all re-

a: S-(+)-<u>O</u>-methylmandelic acid, DCC, DMAP. b: KOH, MeOH. c: PCC. d: $\frac{12}{12}$, ^tBuLi. e: p-TsOH, aq. dioxane.

spects. Formation of the trans-isomer $(\frac{1}{\sqrt{2}})$ was not detected by TLC analysis⁸. On the other hand, the less polar compound furnished, on the same reaction, vitamin D₃ $(\frac{1}{4})$, $[\alpha]_D^{20}$ +50.8° (c=0.43, CHCl₃) in 23.8% yield and trans-vitamin D₃ $(\frac{1}{4})$, $[\alpha]_D^{20}$ +119.4° (c=0.27, CHCl₃) in 19.2% yield. Thus a stereoselective synthesis of vitamin D₃ was accomplished. Since it was made clear from the previous works^{1,10} that the cleavage of the cyclopropane ring proceeded through

the inversion of stereochemistry, the absolute configuration of the (+)-alcohol (18) was determined as shown.

Acknowledgment We thank Dr Masuo Koizumi, Chugai Pharmaceutical Co., for his kind help. A part of this work was financially supported by Grant-in-Aid No. 58870099 from the Ministry of Education, Science and Culture, Japan.

References and Notes

- H. Nemoto, X.-M. Wu, H. Kurobe, M. Ihara, K. Fukumoto, T. Kametani, <u>Tetra-hedron Lett.</u>, 1983, 4257.
- 2) A. Windaus, W. Grundmann, <u>Annalen</u>, 524, 295 (1936).
- 3) H. Taguchi, H. Yamamoto, H. Nozaki, J. Am. Chem. Soc., 96, 3010 (1974).
- D. R. Williams, K. Nishitani, W. Bennett, S. Y. Sit, <u>Tetrahedron Lett.</u>, 1981, 3745.
- 5) All new compounds have been fully characterized by IR (CHCl₃), NMR and mass spectra and elemental analysis and/or high resolution mass spectrometry. (\Re): NMR (CCl₄) δ 5.71 (1H, s, C=CHBr). ($\frac{1}{14}$) NMR (CCl₄) δ 5.61 (1H, s, $-CHBr_2$). ($\frac{1}{12}$):NMR (CCl₄) δ 5.56 (0.53H, s, C=CHBr), 5.86 (0.47H, s, C=CHBr). ($\frac{1}{13}$) less polar compound: NMR δ 0.58 (3H, s, 18-Me); MS m/e 384 (M⁺). polar compound: NMR δ 0.53 (3H, s, 18-Me); MS m/e 384 (M⁺). ($\frac{1}{12}$) less polar compound: NMR δ 0.53 (3H, s, 0Me), 4.22 and 4.36 (each 1H, each d, J = 12 Hz, OCH₂), 4.72 4.76 (3H, m, =CH₂, CHOMe). polar compound: NMR (CDCl₃) δ 3.39 (3H, s, OMe), 4.19 and 4.34 (each 1H, each d, J = 12 Hz, OCH₂), 4.64 4.76 (3H, m, =CH₂, CHOMe).
- 6) M. Sheves, Y. Mazur, Tetrahedron Lett., 1976, 2987.
- 7) B. Neises, W. Steglich, <u>Angew. Chem. Int. Ed. Engl.</u>, <u>17</u>, 522 (1978).
- 8) Sheves and Mazur⁶ examined the solvolysis of two epimers of 3,5-cyclovitamins D_3 and they reported the formation of trans-isomer (17) along with vitamin D_3 from both compounds.
- 9) The Merck Index, the 9th (1983), Merck & Co., Inc, Rahway, N.J., p 1436.
- 10) H. E. Paaren, H. F. DeLuca, H. K. Schnoes, <u>J. Org. Chem.</u>, <u>45</u>, 3253 (1980).

(Received in Japan 2 April 1984)